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Honey is one of the most adulterated foods that caused the global issue in 
food fraud. Stingless Bee Honey (SBH), prized in ASEAN countries for its 
superior medical properties, commands premium prices and is prone to 
adulteration. Conventional authentication methods, though accurate, are 
time-consuming, costly and require specialized facilities, limiting their use in 
routine quality control.This study presents a rapid and non-destructive 
method by introducing a handheld Vis-NIR spectrometer (REVA In-Vitro) 
integrated with embedded machine learning models, operating in the 400-
1000 nm range to authenticate SBH. Samples were artificially adulterated 
with distilled water (DW), apple cider vinegar (ACV), and fructose syrup (FS) 
at honey purity levels from 10% to 90% in 10% increments. 700 spectral data 
were used to train One-Vs-Rest (OVR) classification models with Principal 
Component Analysis (PCA) to classify adulterations, and Partial Least Square 
Regression (PLSR) for SBH purity detection. Validation was conducted using 
50 unseen spectral data.The OVR classification model with PCA achieved 
100% accuracy for both training and validation, while PLSR models attained 
determination coefficients, R² > 0.999 and root mean square errors, RMSE 
of 0.27% - 0.77% during training, and R² ≥ 0.938 in validation. This approach 
offers rapid analysis, minimal sample preparation, and cost-effectiveness 
compared to conventional techniques, providing a practical solution for real-
time SBH authentication in field settings. 
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1. Introduction 

 
Stingless bee honey (SBH) represents a unique and economically valuable product in tropical and 

subtropical regions, particularly across Southeast Asian countries including Malaysia, Thailand, 
Indonesia, and the Philippines. SBH is produced by stingless bees (Meliponini) and is characterized 
by distinct physicochemical properties, including higher moisture content (typically >20%) and 
enhanced therapeutic properties, which is different from conventional honey from Apis mellifera [1].  

 
* Corresponding author. 
E-mail address: hanys.harun@mimos.my 
 
https://doi.org/10.37934/pjcsi.2.1.4766 

https://penacendekia.com.my/index.php/pjcsi/index


Pena Journal of Computer Science and Informatics  
Volume 2, Issue 1 (2025) 47-66 

48 
 

The high market value of SBH creates both opportunities and challenges for the industry. With 
prices 3-10 times higher than regular honey, premium SBH reflects consumer recognition of its 
superior medicinal properties and limited production volumes. However, the high prices also created 
significant economic incentives for adulteration, threatening both consumer trust and the 
sustainability of traditional meliponiculture practitioners.  

The authentication of honey, particularly premium varieties like SBH, has consequently become 
a critical challenge for the global food industry. Economic adulteration through the addition of 
cheaper sweeteners such as high fructose corn syrup, rice syrup, and other sugar solutions represents 
a widespread problem that undermines market integrity [2]. This issue is particularly acute for SBH, 
where the high market value makes fraudulent practices economically attractive to unscrupulous 
actors.  

Current analytical methods present significant barriers for routine quality control implementation 
even though they provide accurate results. Techniques such as high-performance liquid 
chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy, and isotope ratio mass 
spectrometry (IRMS) require advanced laboratory infrastructure, specialized expertise, and 
significant time investment. For example, while NMR can provide long-term stability of spectra and 
extensive structural information, it requires costly instrumentation and remains inaccessible to most 
honey producers [3]. Similarly, even though HPLC is effective for sugar composition analysis, it 
involves complex sample preparation and can fail to detect sophisticated adulterants that resemble 
natural honey composition.  

These limitations have created a significant research and practical gap: the honey industry 
urgently needs rapid, accessible, and cost-effective authentication methods that can be deployed 
outside traditional laboratory settings. This gap is particularly pronounced for SBH producers and 
traders who often operate in remote locations with limited access to analytical facilities.  

Addressing this gap holds significant scientific and practical importance for multiple stakeholders. 
From a scientific perspective, developing portable authentication methods for SBH requires novel 
approaches that account for its unique compositional characteristics, which differ substantially from 
conventional honey. This research advances portable analytical chemistry field and demonstrates the 
integration of machine learning with field-deployable instrumentation. From a practical standpoint, 
this research addresses critical industry needs by potentially democratizing quality control, 
protecting premium market integrity, and supporting sustainable livelihoods for traditional 
meliponiculture practitioners. The significance extends beyond individual producers, contributing to 
consumer protection, regulatory enforcement, and the preservation of authentic food products in 
global markets.  

Near-infrared (NIR) spectroscopy, especially when integrated with machine learning algorithms 
and embedded in portable platforms, represents a promising solution to the identified gap. This 
technique offers significant advantages such as rapid analysis, cost-effectiveness, minimal sample 
preparation, and non-destructive analysis capabilities [4]. Recent developments in portable NIR 
technology have shown potential for on-site analysis without specialized laboratory facilities [5]. 
However, most existing studies on honey authentication using spectroscopy have centered on 
conventional honey types, with limited focus on the unique compositional characteristics of SBH that 
require specialized analytical approaches [8].  

This study presents the development and validation of a rapid, non-destructive method for 
detecting and quantifying adulteration in stingless bee honey using the REVA In-Vitro spectrometer, 
a portable Vis-NIR platform operating in the 400-1000 nm range. This approach directly addresses 
the identified research gap by combining One-Vs-Rest (OVR) classification employed with principal 
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component analysis (PCA) for adulterant classification with partial least squares regression (PLSR) for 
quantitative honey purity determination. 

The specific objectives of this research are to: (1) develop robust classification models capable of 
identifying common adulterants in SBH including distilled water, apple cider vinegar, and fructose 
syrup; (2) establish quantitative prediction models for determining honey purity levels with high 
accuracy; (3) validate the performance of these embedded models using independent samples; and 
(4) demonstrate the practical applicability of portable Vis-NIR spectroscopy for routine quality control 
in SBH production and trade.  

This work aims to deliver an accessible and cost-effective solution that empowers stakeholders 
across the honey supply chain, from small-scale producers to regulatory authorities. By bridging the 
gap between laboratory-grade analysis and field-deployable technology, this research ultimately 
seeks to protect consumer interests while supporting the sustainable growth of the SBH industry.  
 
2. Methodology 
2.1 Instrumentation and Spectral Acquisition  
  

This section outlines the instrumentation and protocols used for spectral data acquisition. The 
primary analytical instrument was a REVA In-Vitro Vis-NIR spectrometer for honey authentication 
measurements, supplemented by a digital refractometer for independent verification of sample 
composition through Brix value determination.  
 
2.1.1 Primary spectroscopic equipment   
 

Spectral measurements were conducted using a Reagentless Blood Testing and Vital Sign 
Analyzer In-Vitro (REVA In-Vitro), a miniature Vis-NIR spectrometer operating in the 400-1000 nm 
range that covers visible to near-infrared spectroscopy as shown Figure 1 which illustrates its 
compactness compared to a standard computer mouse. A palm size REVA In-Vitro, with dimensions 
of 119 mm (length) × 74 mm (height) × 42 mm (width) is a highly portable device and suitable for 
field applications or any on-site spectral analysis. This portable platform serves as the primary 
analytical instrument for honey authentication, offering the capability to embed machine learning 
models directly into the device for real-time field analysis.  

Samples were placed in 10 × 10 mm glass cuvettes and scanned at room temperature. For each 
mixture, spectral acquisition followed a systematic protocol where five individual scans were 
performed, with each scan generating five spectra, resulting in 25 spectra per sample. This approach 
ensured adequate sampling for statistical reliability while capturing potential measurement 
variability. 

 
 

     Fig. 1. REVA In-Vitro, a mini spectrometer 
     compared to computer mouse 
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2.1.2 Supplementary equipment  
 

A digital refractometer HI 96803 from Hanna Instrument was employed as supplementary 
instrumentation to measure Brix values from all samples, providing independent verification of sugar 
content and compositional changes during sample preparation as shown in Figure 2.  
 

 
        Fig. 2. Digital refractometer HI 96803 

 
2.2 Sample Preparation 

  
Stingless bee honey (SBH) samples were procured from local producers. To systematically 

evaluate adulteration detection capabilities, adulterants such as distilled water (DW), apple cider 
vinegar (ACV), and fructose syrup (FS) were mixed with pure honey to create samples with purity 
levels ranging from 10% to 90% in 10% increments, as shown in Table 1. Additional validation samples 
at 20%, 50%, and 80% honey purity levels for all classes of adulterated samples were prepared from 
a new batch to validate the trained models.  
 

    Table 1 
     Class of adulterated samples 

Class Adulterated samples 
DW SBH + distilled water 
ACV SBH + apple cider vinegar 
FS SBH + fructose syrup 
H SBH 

 
Brix values (°Bx) were measured using the digital refractometer for each honey purity level 

ranging from 10% to 90% for all three classes of adulterants, as well as for pure honey (100%), as 
shown in Table 2. Brix measurements served as an independent quality verification method to 
confirm successful sample preparation and to provide supplementary compositional data for future 
correlation studies. While these values were not incorporated into the machine learning model 
development due to the focus on developing a purely spectroscopic approach, they provided 
valuable confirmation of the expected compositional changes in the adulterated samples and served 
as a quality control measure during the experimental phase.  
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Table 2 
Brix values (°Bx) for all samples in different honey purity level (%) using a digital refractometer 

Honey 
purity 
level 
(%) 

10 20 30 40 50 60 70 80 90 100 
(Pure 
Honey) 

 Brix (°Bx) 
DW 8.9 20 24.3 32 40.1 45.2 50.8 56.4 62.6 70.9 
ACV 14.8 19.8 28.5 32.9 40.2 43.4 49.9 58.7 64.9  
FS 76.5 76.1 75.7 73.7 74.4 73.7 72.7 72.6 72.6  

 
The primary analytical instrument employed was a Reagentless Blood Testing and Vital Sign 

Analyzer In-Vitro (REVA In-Vitro), a miniature and portable Vis-NIR spectrometer since the machine 
learning models can be embedded directly into the device, enabling real-time analysis without 
external computational resources. This device represents the core innovation of this study, providing 
both spectral acquisition and on-device analytical processing capabilities.  

A digital refractometer was employed as a supplementary analytical tool to measure Brix values 
from all prepared samples. This instrument served dual purposes which is providing independent 
verification of successful sample preparation by confirming expected compositional changes and 
generating complementary data for potential future correlation studies with spectroscopic 
measurements.  
 
2.3 Data Collection and Preprocessing  
  

This section details the systematic approach used for dataset generation and spectral data 
preparation for the model development from the machine learning. The methodology encompasses 
the collection of a comprehensive training dataset comprising 700 spectra from various honey-
adulterant mixtures, alongside an independent validation dataset of 50 spectra for model 
performance assessment.  
 
2.3.1 Dataset composition  
 

A total of 700 spectra were collected for model training. This dataset was generated from 28 
distinct honey-adulterant mixtures (representing purity levels from 10% to 90% in 10% increments 
across the three adulterant classes, plus pure honey controls). Each mixture underwent 5 individual 
scans, with each scan producing 5 spectral measurements, yielding the complete training dataset (28 
mixtures × 5 scans × 5 spectra = 700 total spectra).  

For model validation, 50 unseen spectra were acquired from newly prepared samples at three 
specific purity levels (20%, 50%, and 80%) across all adulterant classes and this provides assessment 
of model performance on new data representative of practical application scenarios.  
 
2.3.2 Spectral preprocessing  
  

Standardization (Standard Scaler) preprocessing was applied to raw absorbance values from the 
REVA In-Vitro to remove spectral noise and normalize data for both classification and regression 
model development. Standard Scaler implements Z-score normalization, a well-established and 
commonly used scaling technique that centers data around zero with unit variance [12].  
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2.4 One-Vs-Rest (OVR) Classification Model with PCA Employed  
  

The One-Vs-Rest (OVR) Classifier was implemented for adulterant type identification, selected as 
the optimal algorithm for classification accuracy [13]. Principal Component Analysis (PCA), which is 
one of the dimension reduction techniques, was employed to reduce the dimensionality of spectral 
data and facilitate efficient classification of adulterant types.  

Model training incorporated parameter optimization through Grid-Search with 5-fold cross-
validation (K-Fold Stratified) to optimize OVR parameters and ensure robust performance. The 
classification objective was to evaluate sample clustering according to adulterant mixture types, with 
model performance assessed through accuracy metrics, confusion matrices, and 2D/3D score plots 
during training using the 700 spectra dataset. Model validation employed 50 unseen spectra to 
evaluate accuracy and confusion matrices for association strength verification.  
  
2.5 Partial Least Square Regression (PLSR) Model  
  

Separate PLSR models were developed for each adulterant type (DW, ACV, FS) to predict honey 
purity levels quantitatively. Model training utilized parameter optimization through Grid-Search with 
5-fold cross-validation (K-Fold Stratified) to optimize PLSR parameters and ensure model robustness.  

Model performance evaluation involves determination coefficient (R²), root mean square error 
(RMSE), and linear regression analysis of actual versus predicted honey purity levels for both training 
and validation datasets. Regression coefficient plots were generated during model training to identify 
significant wavelengths contributing to each model, providing insight into the spectral regions most 
relevant for purity determination in each adulterant class.  
 
3. Results 
3.1 Absorbance Data 
 

The Vis-NIR absorbance spectra of SBH adulterated with distilled water (DW), apple cider vinegar 
(ACV), and fructose syrup (FS) show distinct profiles across the wavelength range of 415–940 nm, 
reflecting the impact of different adulterants on the optical properties of honey.  

As illustrated in Figure 3, samples with higher concentrations of DW exhibit markedly higher 
absorbance intensities compared to the pure SBH of 100% with the absence of DW and those with 
lower adulteration levels. This observation of inverse relationships is counterintuitive, as dilution is 
generally expected to reduce absorbance, but it may be resulted from multiple scattering, baseline 
shift, or interactions involving O–H stretching overtones and combination bands of water that 
overlap with broad organic absorbance features. Shifting vibrational modes and altering absorbance 
intensity happen when the water molecules form the hydrogen bonds with the constituents in honey. 
Previous study reported that the determination of water content in products is quite challenging 
since the absorption of water in Vis-NIR region from 300 nm to 1000 nm is very weak but Vis-NIR 
spectroscopy to determine water content is feasible since water is a primary quality parameter [9].  
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Fig. 3. Absorbance spectra for SBH samples that adulterated 
with distilled water (DW) 

 
In contrast, the absorbance curves for ACV-adulterated samples in Figure 4 show a clear upward 

trend in absorbance that is visible from 415 nm to around 860 nm across all concentrations, with less 
pronounced separation between levels, indicating minimal variability induced by ACV in the Vis-NIR 
region. This behavior suggests it may be caused by the chemical effect which likely arises from acetic 
acid and O–H and aromatic bonds present in phenolic compounds in ACV that are known to 
contribute to absorbance in the Vis-NIR range. Previous study using hyperspectral imaging clarified 
that wavelength 400 nm to 700 nm showing sensitivity to certain phenolic compounds in ACV which 
aligned with a clear upward trend in the absorbance graph as shown in Figure 4 [11]. 
 

 
 
Fig. 4. Absorbance spectra for SBH samples that adulterated 
with apple cider vinegar (ACV) 

 
FS-adulterated samples in Figure 5 show the most significant absorbance where the spectral 

behavior is highly discriminative, with clear separation between concentrations from 415 nm to 940 
nm. This region, although outside the conventional NIR range, is known to capture second overtones 
of fundamental molecular vibrations. The observed absorbance progression is attributed to higher-
order transitions of O–H and C–H bonds, characteristic of fructose, which are also responsible for 
strong absorption features in the NIR range. Figure 5 shows that all concentrations of FS exhibit the 
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highest peak at 860 nm, which closely aligns with a previous study reporting that one of the highest 
specificities for FS adulteration detection was found at 847 nm [8]. 

 

Fig. 5. Absorbance spectra for SBH samples that adulterated 
with fructose syrup (FS) 

It is worth noticing that Brix values recorded during sample preparation as in Section 2.1 
previously generally decreases with increasing adulteration levels for DW and ACV, while generally 
increases for FS, consistent with the expected dilution of the sugar content in the samples. Overall, 
the addition of water or apple cider, which is predominantly water, reduced the soluble solids 
content (SSC), whereas the addition of high fructose syrup led to a further increase in SSC [8]. 
Theoretically, this supports the spectral observation, particularly for samples that adulterated with 
FS where increasing sugar concentrations that reflected in higher Brix values align with the stronger 
absorbance features attributed to O–H and C–H bonds overtones. Although Brix values were not used 
in model training, their trends confirmed that there is a compositional change in the mixtures which 
shows that the spectral patterns are directly associated with the chemical content variations such as 
sugar. Overall, the spectral response varies significantly by adulterant type. These findings are 
discussed in Sections 3.2 and 3.3 below. 

3.2 OVR Classification Model with PCA Employed 
 

This section presents the performance of One-Vs-Rest (OVR) classification model that employed 
with Principal Component Analysis (PCA) for dimensionality reduction of the spectra to identify the 
type of adulterant present in SBH samples. The score of accuracy, precision, recall, and F1-score 
resulted to the model performance during both training and validation phases. 
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3.2.1 Training 
 

The OVR classification model that employed with PCA was trained with the aim of classifying the 
honey samples into 4 classes and all those classes were successfully distinguished with 100% in 
overall accuracy, F1-score, precision and recall with the support of 225 for class DW, ACV and FS, and 
25 for class H from the model trained on cuvette-based spectra data as shown in Table 3 and Figure 
6.  G.Mahalakshmi et al. (2021) reported that they achieved identical 100% accuracy for Random 
Forest among the seven classification algorithms for medical dataset which shows that it is possible 
to achieve 100% accuracy of classification [14]. 
 

 
 

Fig. 6. Confusion matrix from the OVR classification with PCA 
for all 700 training samples 

 
Table 3 
Training result from the OVR classification with PCA model trained 

Class of 
adulterated 
samples 

Accuracy overall F1-score Precision Recall Support 

DW 100 100 100 100 225 
ACV  100 100 100 225 
FS  100 100 100 225 
H  100 100 100 25 

 
During the training, cross validation using 5-fold (Stratified K-Fold) was applied via 

hyperparameter optimization of Grid Search to ensure the model’s robustness where only the best 
model is saved and deployed. Proposed by [7] that Grid Search is carried out to optimize the 
parameters to enhance the efficiency of the model and concluded that hyper-parameter tuning plays 
a significant role and give a positive impact on the model’s predictive power. The technique applied 
in this training is not only optimized for the model hyperparameter such as the principal component 
numbers but also to ensure that each class was fairly represented in all folds to reduce the risk of 
overfitting.  
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In our study, to simplify complex data like spectra into meaningful patterns, Principal Component 
Analysis (PCA) can be thought of to summarize the most important trends in the data which is similar 
to capturing the essence of a story without repeating every detail. PCA reduces data dimensionality 
by projecting them onto a lower-dimensional space which is principal components (PC) to summarize 
the data using only fewer components, and from this study [10], only first principal component (PC1) 
is retained and the rest are discarded. [6] observed that the first three PCs were used to reconstruct 
the spectra and confirmed that when additional PCs are added to PC1, the reconstructed spectra is 
better and matched the recorded data. 

As shown in Figure 7, the 2D PCA score plot involved the principal components of PC1 and PC2 
for the honey samples, SBH with total explained variance are 96.1 % and it visualizes moderate to 
good class separation, with some overlaps between classes. The 3D PCA score plot for the honey 
samples includes PC1, PC2 and PC3 with a total explained variance of 98.2% as shown in Figure 8. The 
inclusion of the third principal component provides an additional dimension of data separation, 
enhancing the distinction between classes that appear closer to the 2D plot. Those three components 
(PC1-PC3) are most likely to explain the vibration in the bonds of any adulterants which may 
contribute to their optical or chemical properties in the wavelength range of our study (415 nm - 940 
nm). The PCA score plots indicate that PCA has effectively captured the main variance in the dataset 
such as optical or chemical properties in the honey, providing a simplified yet informative 
representation of the data which is meaningful for OVR classification. 

The remaining 3.9% (2D) and 1.8% (3D) unexplained variance likely reflects subtle sample-specific 
variability, experimental noise, or minor compositional differences not crucial for class 
discrimination. These components may include minor baseline shifts, instrument noise, or low-
variance chemical signatures which might be affected by adulterants such as water. Although the 
loading plots are not shown, the interpretation of PC1–PC3 follows prior spectral studies and is based 
on known Vis-NIR molecular vibration patterns. 

 

 
Fig. 7. 2D PCA score plots for all 700 training 
samples 

 



Pena Journal of Computer Science and Informatics  
Volume 2, Issue 1 (2025) 47-66 

57 
 

 
Fig. 8. 3D PCA score plots for all 700 training 
samples 
 

Overall, the OVR classification model with PCA provides a clear and interpretable low-
dimensional projection of the honey dataset. It captures meaningful chemical variance and supports 
reliable classification of SBH adulteration types. 

 
3.2.2 Validation 

 
To validate the OVR classification model with PCA employed, the model was tested on 50 new 

SBH samples with 15 samples for each of the adulterants DW, ACV and FS, while 5 samples for pure 
honey (H). As shown in Figure 9 and Table 4, all samples were correctly classified and again achieving 
100% classification in overall accuracy, F1-score, precision and recall indicating a perfect association 
between actual and predicted classes even using the new data which is considered as unseen data in 
the real-world application, while this confirms the generalization capability of the OVR classification 
model with PCA when applied to unseen data. 
 

 
Fig. 9. Confusion matrix from the OVR classification 
model with PCA for all 50 validation samples 
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Table 4 
Validation results from the OVR classification with PCA model trained 

Class of 
adulterated 
samples 

Accuracy overall F1-score Precision Recall Support 

DW 100 100 100 100 15 
ACV  100 100 100 15 
FS  100 100 100 15 
H  100 100 100 5 

 
3.3 PLSR Regression Model 
 

This section describes the performance of the Partial Least Squares Regression (PLSR) models 
developed to quantify the percentage of honey purity across three adulterant classes (DW, ACV, FS). 
The score R² and RMSE metrics contribute to the model performance for both training and unseen 
validation data, also regression coefficient analysis was performed to interpret the spectral 
significance of each wavelength during the training. 
 
3.3.1 Training 

 
Three PLSR models were developed for each of SBH adulterant classes, DW, ACV, and FS, to 

predict honey purity level (%) and the result display is combined with the classification result, such 
as ‘DW, H: 30%’ which indicates that the sample is a mixture of 70% distilled water and 30% honey. 
Those 3 models validate the honey level almost correctly for all new samples in the glass cuvette 
which have the same condition as the training data which will be discussed in the next part. Table 5 
shows that all 3 PLSR models demonstrated excellent fit during training, with R² values above 0.999 
and RMSE values ranging from 0.27 to 0.77, indicating high prediction accuracy across a broad range 
of purity levels (10% to 100%).      
 

           Table 5 
            Training result from the PLSR regression model trained 

Class of Adulterated Samples R² RMSE 
DW 0.9999 0.27 
ACV 0.9998 0.36 
FS 0.9991 0.77 

 
Same as the OVR classification model with PCA, the PLSR model also trained with the 

implementation of cross validation of 5-fold (Stratified K-Fold) via Grid Search to ensure the model 
robustness and promising accuracy. Regression coefficients plots identify the significant wavelengths 
contributing to each of the model, high positive coefficient indicates a strong positive influence that 
is crucial and critical for the predictions which may provide more insight into the chemical or physical 
properties of SBH represented in the models and vice versa for high negative coefficient. Wavelength 
with smaller or near-zero coefficients shows it has little influence on the model’s prediction.  

Table 6 and Figure 10 capture the result and plot of PLSR regression coefficient per wavelength 
for 3 classes of all samples. For PLSR model of DW-adulterated samples, the most influential 
wavelength is 940 nm, which corresponds to the O–H stretching overtone absorption of water. This 
region is known for strong NIR absorbance due to hydrogen bonding interactions of water molecules 
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with solutes, as described in aquaphotomic. In the ACV model, 705 nm emerged as the most 
positively influential, linked to overtone and combination bands associated with phenolic compounds 
in the ACV. For the FS model, the 760 nm wavelength shows the highest positive influence even 
though it is outside conventional NIR range, it still captures second overtone transitions of O–H and 
C–H bonds, primarily due to glucose and fructose content.  

 
Table 6 
PLSR regression coefficient per wavelength for 3 classes of all samples 

Class of Adulterated 
Samples 

Highest Positive Coefficient Highest Negative Coefficient 

 Wavelength (nm) Coefficient Wavelength (nm) Coefficient 
DW 940 6.3 560 -8.7 
ACV 705 10.5 585 -4.4 
FS 760 6.5 610 -21.5 

 

 
(a) 

 
(b) 
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(c) 

Fig. 10. Plot of PLSR regression coefficient per wavelength for samples 
adulterated with (a) distilled water (DW), (b) apple cider vinegar (ACV), and 
(c) fructose syrup 
 

Linear regression of actual versus predicted honey purity level (%) of the 3 PLSR model 
determines the model’s predictive capacity across the different classes (DW, ACV and FS) as in Figure 
11. The predicted honey purity level (%) perfectly aligned along the diagonal (dashed red line) shows 
a high degree of linearity for each plot of all models. This alignment indicates the high accuracy of 
prediction, and the data points that are tightly clustered around the regression line proved the 
model’s consistency.   
 

 
(a) 
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(b) 

 
(c)  

Fig. 11. Plot of PLSR correlation of honey purity level between 
actual versus predicted sample that adulterated with (a) distilled 
water (DW), (b) apple cider vinegar (ACV), and (c) fructose syrup 
(FS) 

 
3.3.2 Validation 
 

For PLSR model validation, new SBH samples at three purity levels (20%, 50%, and 80%) were 
used to evaluate all trained models. This validation scheme, while reflective of practical purity 
extremes and a mid-point, introduces limitations in granularity and generalization, particularly since 
other purity levels which in SBH range of 10-100% were not included. 

As expected, RMSE values increased compared to training, particularly for the FS model (RMSE = 
6.10), due to reduced variation of concentration in data and the model's sensitivity to overlapping 
sugar-based spectral features as shown in Table 7. A similar observation was reported in a previous 
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study [15], where the model performance dropped from the reduced R² and increased normalize 
RMSE when tested on a limited testing data that did not reflect the full variability of seen data during 
training. Despite the increase of RMSE in our study, R² values remained high, ranging from 0.938 (FS) 
to 0.986 (ACV), showing that the models continue to capture the relationship between the 
absorbance and honey purity effectively. 

 
                         Table 7 
                      Validation results from the PLSR regression model trained 

Class of Adulterated Samples R² RMSE 
DW 0.9854 2.96 
ACV 0.9860 2.90 
FS 0.9380 6.10 

 
The visual alignment of predicted versus actual honey purity level shows reasonable clustering 

near the 1:1 diagonal, indicating consistent prediction trends even with fewer validation points of 
honey purity level as shown in Figure 12 which are correlated to each other. However, the minor 
prediction errors on RMSE are affected by using only 3 validation points, especially when outliers are 
present. 

 
(a) 
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(b) 

 
(c) 

Fig. 12. Correlation between actual versus predicted sample that 
adulterated with (a) distilled water (DW), (b) apple cider vinegar 
(ACV), and (c) fructose syrup (FS) 

 
To improve model robustness and generalizability, the future work should include a broader 

range of honey purity levels and additional independent sample sets. 
 

3.4 Detection Limits and Analytical Performance 
 
The section here evaluates detection capabilities, precision and repeatability, and performance 

of REVA In-Vitro system integrated with machine learning models for SBH adulteration and honey 
purity level analysis. This is to focus on determining the minimum honey purity levels that can be 
reliably detected, evaluating the repeatability of spectral measurements, and measuring the 
predictive performance of both classification and regression models. 
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3.4.1 Minimum detectable adulteration levels 
 
The REVA In-Vitro spectrometer was evaluated across honey purity levels from 10% to 90% in 

10% increments, demonstrating reliable detection and quantification for all three adulterant types 
tested. The lowest experimentally validated level was 10% honey purity (90% adulteration), where 
PLSR models achieved RMSE values of 0.27%, 0.36%, and 0.77% for DW, ACV, and FS adulterants 
respectively. The OVR classification model maintained 100% accuracy for adulterant type 
identification across the entire tested range. While distinct spectral signatures (Figures 1-3) suggest 
potential for lower concentration detection, actual detection limits below 10% remain undetermined 
without systematic evaluation. 

Current results confirm reliable detection at 10% purity and below, representing commercially 
significant adulteration levels for fraud detection. Determination of absolute detection limits would 
require additional experimental validation with lower concentrations of adulterants. 

 
3.4.2 Precision and repeatability 

 
The experimental design incorporated 25 spectra per sample (5 scans × 5 replicates), enabling 

assessment of measurement of repeatability. PLSR training performance with R² > 0.999 and low 
RMSE values (0.27-0.77%) relative to the measurement range (10-100% purity) indicated good 
spectral consistency under controlled laboratory conditions. 

Validation using independent samples maintained reasonable precision with R² values of 0.938-
0.986, though RMSE increased to 2.90-6.10% as expected when applying models to new samples. 
The maintained linearity in actual versus predicted plots as in Figure 10 previously confirmed 
consistent measurement behavior across validation sets. 

The observed repeatability applies specifically to the controlled laboratory conditions used, such 
as standardized sample preparation and consistent environmental factors. Assessment under varying 
operational conditions would require additional experimental validation. 

 
3.4.3 Statistical performance metrics 

 
The OVR classification model achieved 100% accuracy across training (n=700) and validation 

(n=50) datasets for the specific adulterant types and concentration ranges tested, corresponding to 
zero misclassification errors within the experimental framework. PLSR models demonstrated R² > 
0.999 during training and 0.938-0.986 during validation, with RMSE values of 0.27-0.77% and 2.90-
6.10% respectively. The higher validation RMSE for the FS model (6.10%) reflects spectral complexity 
from overlapping sugar signatures between fructose syrup and natural honey components, 
consistent with the challenging nature of sugar-based adulterant detection compared to water or 
vinegar additions. 

These performance metrics apply to the controlled laboratory conditions and specific 
experimental parameters tested. Generalizability to different honey matrices, additional adulterant 
types, or varying environmental conditions requires systematic evaluation through broader 
validation studies. 
 
4. Conclusions 
 

This study demonstrated the effectiveness of Vis-NIR spectroscopy combined with OVR 
classification employed with PCA and PLSR models in detecting and quantifying adulteration in 
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stingless bee honey (SBH). The OVR model achieved 100% classification accuracy during training and 
validation, while PLSR models showed high predictive performance with R² values above 0.99 during 
training and above 0.93 during validation. These outcomes strengthen the validity of the models for 
deployment and future use in practical applications. Data expansion should be considered for model 
testing and validation by increasing the sample sizes for all classes to establish a more robust dataset, 
reducing variability, and increasing confidence in the model predictions. More samples are needed 
for model validation with the new honey variability in real-time. The use of preprocessed absorbance 
data preserved essential spectral features, enabling reliable differentiation across adulterants. 
Validation using new SBH samples confirmed the models' robustness and real-world applicability. 
These findings support the potential of the REVA In-Vitro platform for rapid, reagent-free honey 
authentication. 
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